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This paper demonstrates that it is straightforward to develop the theory of an atom in a metkeld&tension

of quantum mechanics to an open systdmy deriving the necessary equations of motion from Sdimger’s
equation, followed by a comparison of the predicted properties with experiment to determine the correct
boundary condition. Although less fundamental than the variational derivation of the quantum theory of atoms
in molecules, this heuristic approach makes the quantum mechanics of an atom in a molecule accessible to
“everyman” possessing a knowledge of Satinger’s equation, aiding its general acceptance by experimental
chemists.

Extending Quantum Mechanics to an Atom in a Molecule From Schrodinger’s Equation to an Equation of Motion

An equation of motion completely determines the physics
associated with any measurable property. It is worth-
while recalling that in the Heisenberg approdchne that

d hat it is relatively simol bine Daltor’s id preceded Schidinger’s “wave mechanics”, quantum mechanics
emonstrate that it is relatively simple to combine Dalton’s idea ¢ expressed in terms of the equations of motion for

of the atomic nature of matter with Scldinger’s equation by {he opservables, emphasizing the ties that link theory to
showing that quantum mechanics applies to an atom bound ingpgervation. Thus developing the physics of an atom in a
a molecule or in a crystal. An atom bound to other atoms may molecule entails the two basic concepts of quantum mechan-
exchange energy and/or charge with its neighbors when itics: Schralinger's equation and the equations of motion for
undergoes motion relative to the other atoms. A bound atom is the observable’.
thus described as an open system. Although this is not the path generally followed in studies
The derivation of the physics of an open system is ac- pf quantum chem?stry that tgnd to focus on the orbital approgch,
complished in two steps. One first uses Scinger's equation itis the_path that links chemlstry with phy_S|cs. Mole_cular orbital
to determine the time rate-of-change of the average value of atheory is clearly essential to understanding chemistry, but why

property, the property’s “equation of motion”. This is done for should one stop there when the world of physics lies at its

. . .~ doorstep? In seeking the physics of an atom in a molecule, one
the total system and for any of its possible fragments, bringing . . . . .
. o is obliged to cross the threshold from orbital theories and their
one to the second step. Out of all possible partitionings of a

. } associated models and step deeper into the world of physics.
system, how does one determine the one that yields opengggjges, the physically sound models derived from orbital
systems corresponding to the atoms of chemistry? It is at this arguments, those that relate to measurable properties, are

point that experiment comes to the aid of theory. Just as onerecovered by the physics of an atom in a molecule. These
invokes boundary conditions to delimit the mathematically include the hybridization model as applied to atomic stabilify,
acceptable solutions found for S¢dinger’s equation to those  homoaromatic conjugatiot;12 “resonance®® and strain ener-
that describe physically realizable states, so it is equally giesi® NMR deshielding of an aromatic protdfhconfirmation
necessary to apply a boundary condition to delimit the equationsof the presence of the ChatDuncanson model of so—pz*

of motion derived for arbitrary fragments of some total system, back-bonding® in the quadrupolar polarization of the
to the open systems whose predicted properties yield agreementigand density® and the predictions of frontier orbital theot,
with experiment. By applying a boundary condition such that to cite a few examples. So one is not asked to give up orbital
the properties predicted for the resulting open systems recovermodels, but rather to relate them more directly to the underlying
the experimentally measured additive properties associated withPhysics:® If hybridization predicts planar nitrogen to be more
an atom in a molecule, one obtains a unique partitioning of any Stable than pyramidal in some reaction, why not make the
system into atoms. The uniqueness of the partitioning is assurec?r9ument quantitative by calculating the change in the energy

) X : o
once this condition is satisfied, because the experimental of the mtroge_n atom mc_urred in the reactlon_. .

. . . The Equation of Motion. The change with time of the
predictions of quantum mechanics are unique.

average value of some prope/y(the expectation value of its
This heuristic approach to defining the physics of an atom associated operatdk, the quantity™®, AW[) is given by the

in a molecule-theory followed by appeal to experimerit less Heisenberg equation of motion. When expressed in the language

elegant than its variational derivatio® from Schwinger's of wave functions, the Heisenberg equation is given by

principle of least actiofi,but it has two distinct advantages: it eq 1.

makes the physical validity of the theory accessible to “every- . L

man” and demonstrates its rooting in experiment. diW, AWdt = (i/h)W, [H,A|WO Q)
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It is just over two hundred years since Dakltgroposed his
atomic theory and just over 80 years since Sdhwrger derived
his wave equatioA.The purpose of the present paper is to
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Equation 1 is expressed in terms of the “bra-ket” notation to The first two terms on the RHS of eq 6 cancel because both
take advantage of its compact nature. It is rewrittenbelow in equalE|Alyla, as is the case of a total system, leaving

terms of the more usual integral notation NN R PN
[pIHA — AH|p L) = WIHA[pL, — Hy|Alply  (7)

At this point and without the any loss of generality (as
When the system is in a stationary state described by thedemonstrated below) one assumes a one-electron Hamiltonian

d (WA W dr/dt = (i/h) [P HAW dr (1)

functiony, eq 1 becomes H = —(h%2m)V2+ V = T + V. In addition, the potential energy
operatorV is assumed to be of the form for an atomic or
@, [A,Aly 0= fw*[F':A]’l’ dr=0 2) molecular Hamiltonian consisting of electrenuclear and

electron-electron interactions and not containing any gradient
The vanishing of the commutator in eq 2 may be derived terms. This being the case, the only terms that survive the
independently. Expanding the commutator and averaging yieldsdifferencing in eq 7 are those involving the kinetic energy

NN . A . operatorT and the operatoA to yield eq 8,
p|HA — ARy = Op|AApO- @IARY =0 (3)

This result follows from the hermitian nature i which may @IHA — AH|y L = fg dr (—R*2m)V-{* V(Ap) —

act to the left to yieldg|HA|y = [Hy|Ay = E[|Ajyor to vy*(Ayp)} (8)

the right to yield the equivalent resulip|AH |y = Elp|Ajyp 0

Whether or not an operator has this property of acting to the @ step that is amplified in the Appendix. One now makes use
left or to the right depends upon the domain of integration, and of Gauss’ theorem stating that the volume integral of the
in general, when the domain is restricted, as it is in delineating divergence of a vector as found in eq 8 may be expressed in
the boundaries of an open system, this property is lost. Oneterms of a surface integral bounding the volueransforming
may prove this to oneself by considering the momentum operatorthe RHS of eq 8 into a surface integt&r°

—id/dx in one-dimension. One finds that A 5 A
@I[H.A] [yl = (—h%72m) § dS(rgQ) {y* V(Ay) —
J (=i dyldxy*y dx = [y*(—i dyldx) dx + vy*(Ayp)}-n(r) (9)

id(w*1,0)/dx|_+c,‘f,o 4) The unit vectorn(r) is normal to the surface at the point

Only components of the vector in the curly brackets that are
The producty*y = p, and the density together with its parallel ton(r) survive in the scalar product.
derivatives, vanish on the boundaries at infinity, but not when  The term appearing in the surface integral is proportional to
the boundary has a finite value. In three dimensions, the the quantum mechanical current density for the operétor
nonvanishing remainder is an integral over the surface that making e 9 a result of physical importance. That is, eq 9 may
encloses the open system. This simple example demonstratege expressed as
the feature that distinguishes the physics of an open system from

that of the total system of which it is a part: the loss of the @I[FA] [yl = —ifk § dSrgQ) jA(r)-n(r) (10)

Hermitian character of operators and the resulting appearance

of surface integrals. where the current density for property A is defined as
We are now ready to consider the extension of the station- . _ N o oA

ary state expression of the equation of motion, eq 2, to an ja(r) = (A/2mi){y* V(Ap) — Vy*(Ay)} (11)

open systemQ; that is, we wish to evaluate the quantity h . has the di . ; loci .
@|[A,A] [y, where the subscript implies that the averaging The vector currenia(r) has the dimensions of a velocity, giving

is taken over the region of the open system. Concomitant with the velo_lc_irty of the density fofrtlhe pr?per}&_/at somle ?Oir?t in
the loss of hermiticity is the necessity of now requiring the SPac€. The component of the surface integral of the current

expectation value of an operator to be real. Thus one mustnor_mal to thg surface of the open system, t_he term described
always consider the sum of the operator average and its comple@yJA(r)'n(r)’ IS terr_ned the “flux”. Th|s result is demanded by .
conjugate (cc) over an open system to be certain that the Physics, because, in the general time-dependent case, there will
expectation values are real numbers. Thus we consider theP® @ flow of matter and energy across the surface of an open
quantity 1/2{@”':',,&“1/)@2 + cg. We shall in the derivation system. Now of course in a stationary state, there is no current

consider just one term in the expression, the cc being readilyﬂow' but the ;urface term remains as an essentla_l component
added at the end of the derivation of the properties of an open system, appearing as it does on an

Equation of Motion for an Open System.The procedure gqual footing With thg commutator average. The name "me"
followed here is given in the bookhe Quantum Theory of is retained even in this case following Feynman’s suggestion:

Atoms in Molecules, a Quantum ThedfyExpanding the “Although it is not the flow of anything, we still call it the ‘flux’.

commutator as in eq 3 and averaging over an open sy&tem “: We generalize the worgl ‘flux’ to me?n the “surface integral
yields of the normal component’ of a vectof?

We can now state the equation of motion for operatdor
p|HA — AF'W@; = [31(,||3|A|1/)@2 — [31(,|A|3||¢@2 (5) an open syster@ in a stationary state, multiplying the results
in eq 10 by (ik) to obtain
To proceed, one puts the expression in maximum correspon-, R
dence with the total system result by adding and subtracting /-{ (i’A)@|[H.A] |y} + cct =

WIHA = AHlyls = Hy ALy TAEMAHW% +A Unlike the total system, for which the commutator average
|HAIYL, — [Hy Ayl (6) vanishes, eq 2, the corresponding quantity for an open system
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equals the surface integral of the normal component of the speaking, ofll, point-mechanical configurations kinematically
current of the property, the flux in the current oA. It is this possible. Thus, each point-mechanical configuration contributes
very property that makes the properties of an open syst@m  to the true wave-mechanical configuration with a cervedight

an atom in a molecutedifferent from the corresponding  which is given precisely byy*y.”2

properties for the entire molecule. The same mathematical Schralinger realized that in addition to the definition of the
procedures may be employed to generalize the time-dependentelectric density” as a single-particle concept in real space, it
expression of the equation of motion to an open system to yield was equally necessary to describe its flow. Hence his derivation

eq 13 The quantitypa(r) is the density of propertp, equal in the same paper of the “equation of continuity of electricity”

through the definition of the single-particle current density. This

df dr p,(r)/dt = 1/2{ (i/h)BIf|[I:| A]|1P@2 +cg — equation, which applies equally to the classical flow of current,
o ;

states that the change in density of charge per unit volume of
1/2{ $d(Q) jarn + ¢} + {#d(Q) (3Fdt)p,(r) + cct (13) space is given by the net outflow or flux ff) per unit volume

in the neighborhood of the poimt, a flow that is described
to 1 (Alp)*l{! + lp*Alp}, and its integral ove gives the mathematically by the divergence of the vector current, that is,
open system average of A. Equation 13 relates the time rate- [
of-change of this average value to the commutator, to the flux dp(r)/dt = V+j(r) (15)
in the property current, and to a surface term that takes into g definition of the curreni(r) is identical to that derived above
account the contribution to the change in the average value of;, eq 11 with the operatoA set equal to unity and with the

A arising from the change in the surface with time, the term gyansjon to the many-electron case determined by the same
090t. In a stationary state, the commutator average is balancedaveraging as used in the definition of the density, in eq 14
by the current flux, eq 12. ’ ’

From the One- to the Many-Electron Case i) = N(h/2mi)fdr' {v*Vey —yViy} (16)

Schradinger’s Definition of the Electron Density and Its Itis important to note that althoughis the many-electron wave
Current. Extending the equation of motion for an open system function, the derivative is taken with respect to the coordinates
to the many-electron case brings forth a very important tie with of the single electron denoted by it is a one-electron operator
observation, as the mathematical procedure involved is identicalaveraged over the motions of the remaining electrons, as is the
to that used to define the measurable electron density, as doneglensity whose flow it describes.
by Schialinger in the fourth and final of the papers he published ~ Generalization of the Definition of the Density and Its

in 192621 It is worth one’s while to consider Schiimger's Current to All Properties. The physics of an open system
remarks concerning the reasons he gives for defining the electronrequires that one extend Sctinger’s definition of the electron
density. He initially ascribed physical meaning to the-* and current densities to all properties, as is evident in eq 10

function”, having referred tot-vibrations” “as something quite  that equates the commutator average for the propetty the
real.” However, in the fourth paper he notes that “We have fluxin its vector current through the surface of the open system.
repeatedly called attention to the fact that théunction itself Thus, in anticipation of its averaging over an open system, the
cannot and may not be interpreted directly in terms of three- density of a property defined by the Hermitian operatois
dimensional spaeehowever much the one-electron problem given in its real form by

tends to mislead us on this poirbecause it is in general a

function in configuration space (now referred to as Hilbert palr) = 1/2{ f dr’ (w*A(r)zp + (A(r)w)*w)} a7
space), not real space.” Thus in the fourth paper he discards . ]
the idea of using they-function” in favor of the “weight- ~ and its associated current as

function y*”, which, when subjected to the appropriate . .

integration, yields the “density of electricity” at an arbitrary point jA(r) = N(h/2mi) f dr' {y*V,(A(r)y) — V,*(A(r)y)} (18)

in space, relegating thg-function to the role of determining ) . .

the “weight-function y*y”. He obtained the “density of Both expressions d.|ffer from their one-electron system coun-
electricity” (the electron density) by integrating the product ~ terparts only in being averaged over the coordinates of the
w* over the coordinates of all the electrons but one, whose "€maining electrons. It_|s important to note that th_e operator
position is fixed at a point in space, a procedure he denotes byA(r), as does the gradient;, acts only on the particle with
the symbol/y*y dx', and then repeats for all electrons. coordinater. _ _

Schralinger’s definition ofp needs to be modified only to Many-Electron Equation of Motion for an Open System.
take into account electron spin, something that is done by simply YV& are now in a position to rewrite the equation of motion for
including a summation over all spins, in addition to the the operatoA for an open syster® for the many-electron case
integration over the coordinates of all electrons but one (whose 1 A
coordinates are denoted by the veatpra procedure presently  d [,ea(r)/dt = “1{ (/A)W|[HA] WL, + cc} —

denoted for allN electrons by the RHS of eq 14. One must y ($d(Q) j,n +cd + ey ($dS(Q) 3(Sat)pa(r)} (19)
2 A 2 A

o(r) = Nfdr' y*y (14) This result is no different in form nor physical content to that
given previously for the one-electron case, eq 13, other than

realize that one is not simply “integrating over the coordinates that the property density and its current involve averages over
of the remaining electrons” in taking this average but is instead the coordinates of the remaining electrons. The abbreviated
averaging the interactions of the densityr aiver the motions notation used for the commutator in eq 19 is given explicitly
of the remaining electrons throughout “configuration space”. below, emphasizing once again that the operétacts only
To quote Schidinger (his italics): “Thewave mechanical on the coordinates of the electron with position veatothe
configuration of the system issuperpositiorof many, strictly coordinate that is integrated over the open systeém
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(ilh) W|[H,A]| WD + cc= 5(r) = (W%1am) [[dv’ {V(Vy)y +
(RN fodr fdr {WIRLAT]W} + cc (20) YEVVY — VRV — Vyyr) (22)

The corresponding statement of the equation of motion for a Per unit volume or equivalently, force per unit area, is termed
system in a stationary state is identical to that given previously @ stress tensor. Itis in fact the current of the momentum density
for the one-electron case in eq 12 with the understanding thatand it thus appears as the flux in the Ehrenfest force theorem
the current refers to the definition given in eq 18 for the many- determining the force acting on the surface of an open system.

electron case and the operatracts on the particle whose The stress tensor is a most remarkable quantity. lts diver-
coordinates denoted by are integrated over the open system gence, the quantity-V -G(r) determines the force acting on
Q as specified in eq 21. the electron density at the poinf®25Thus the interactions of
an electron at a point in space with all of the remaining electrons,
1/2{ (i/h)Elol[H,A(r)]lw@z +cg = together with its interactions with the nuclear framework, are

1 ) all condensed into a density expressible in real space. The virial
1,$dS(r Q) ja(r)-n(r) + cc (21) of this force, the quantity-r-v-6(r), determines the electronic
potential energy of the electrons, a quantity that once again
The similarity in form and physical content of the expressions condenses the many-electron interactions and those with the
for the equations of motion for the one- and many-electron casenuclei into an energy density expressible in real space. Clearly,
are striking.This brings to the fore that the single-particle nature one may determine the force acting on a region of space or
of quantum mechanics in a many-particle system is the result determine its potential energy simply by integrating the ap-
of following the Heisenberg approach, transforming Schro  propriate density. A most remarkable result!
inger's equation into an equation of motiomhe Heisenberg The open system statement of the virial theorem is given by
approach brings one directly to the physics of the measurable
expectatiorvalues. We shall find that this approach enables one —2T(€2) = 74(€2) + 7(2) + L(Q) = 7(RQ) + L(2) (23)
to defineall properties, including those that depend upon inter- ) o
particle coordinates such as the energy, in terms of real-spacel (€2) is the kinetic energy of the electrons, the termg(<)
density distributions. and 7’(€2) are the virials of the forces acting over the basin
One notes that all of this requires that the operdtaefer and the surface of the atom, which sum to yield the tate®),
only to the coordinates of the particle whose properties are the potential energy of the electrons. The final ter(62) is
averaged over the open system. Though this step follows foreign to the V|r|a_I theorem for the total system which states
naturally from the field theoretic approach employed in deriving that —2T = 7’ It is the open system average of a quantity
the physics of an open system from Schwinger’s principle, one Proportional to the Laplacian of the density, the tefrth?/
that emphasizes the single-particle nature of matter, it is 4MV?0(r). The stage is now set to complete the derivation of
recovered in the present approach by defining the density andthe quantum theory of atoms in molecules by determining the
its current, as done by Scitfiager. These are the tools necessary Poundary of the open system such that its properties including
for the application of his equation to predicting and understand- itS €nergy, as determined by the equations of motion, agree with
ing the properties of matter. Sciiager concludes his fourth ~ the measured values assigned to atoms in molecules.
paper by expressing his hope that the density and its current Choosing the Boundary of the Open Systemit is best to
prove useful in the elucidation of the electric and magnetic Pegin with the property that would appear to be the most
properties of atoms and molecules. It is clear to the reader atdifficult, if not perhaps impossible to spatially partition, the

this point that with the four papers published in 1926, Sehro €nergy. How can one partition the energy of repulsion between
dinger provided all of the physics required to extend quantum the electrons and between the nuclei into atomic contributions?

mechanics to an open systét3 The literature records many failed attempts, but of course

physics provides the answer by providing single-particle densi-
Using the Equation of Motion To Define an Atom in a ties of all properties, including the energy. So we begin with
Molecule the virial theorem, as did the historical development of the theory

. ies f h . £ Mot h of atoms in molecule¥ The study of the kinetic energy of the
Det_ermlnlfng Pr_opefmes rom the Equation o MOt'OC';" T % f electrons leads immediately to a quantum constraint on the
equations of motion for an open system, eqs 19 and 21, defineygginition of the boundary. There are two ways of defining the

all measurgble prgpertié‘sof an open system. Spme properties kinetic energy density and hence the kinetic energy of some
are de_termlned directly by the simple averaging of the corre- region Q. One is the “Sctifdinger kinetic energy”, the form
sponding operator,_whereas others, such as the energy of aréppearing in his equation and labelétt),

open system, require the evaluation of the appropriate com-

mutator in the associated equation of motion. Two of the most _ 2 2

important of these resulting theorems are obtained by sekting der K(r) =~k /4m)f9dr {y*voy +

equal to the momentum operatprof an electron whose time wvzw*} =K(Q) (24)
rate-of-change determines the force acting on the electron, the

Ehrenfest force, and the virial operafop, the product of the ~ and the other, the positive definite form used by him in the
position and momentum operators for an electron, whose functional he varied to obtain his wave equation, labe3¢d),
equation of motion yields the virial theorethThe evaluation

of the associated commutators and surface integrals for the der G(r) = (h/2m) fgdr Vy*-Viyp = G(Q) (25)
resulting Ehrenfest force and virial theorems may be found

elsewhere. We draw attention here only to the appearance inThough both kinetic energy densities integrate to the same value
these expressions of the third and final single-particle densitiesover all space, they differ locally by a term proportional to the
introduced by Schidinger, the energy density tensai(r) Laplacian of the density, as indicated in eq 26. Gauss’ theorem
defined in eq 224 This quantity, with dimensions of energy is again used in the final two terms of this equation to transform
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_ _ g2 2 _ The atomic virial 7(Q2), the virial of all of the forces acting on
K@)~ Q) =LQ)=~{ /4m)der Voelr) = the atom, is the electronic potential energy of the atom. It defines
—(h?/4m)$d(Q) Vo(r)-n(r) (26) the electronic energyEg(2). 7(2) differs from the usual
definition of the potential energy in a molecular system, the
a volume integral of the gradient of a vect®#Vp(r), the term guantityV, that equals the electremuclear attractive energy,
L(R2) in eq 23, into a surface integral of the flux in the vector and the electronelectron and nucleamuclear energies of
Vp(r). The kinetic energies yield identical values when inte- repulsion, in that it contains in addition to these contributions,
grated over all space because the fluX’is(r) vanishes at every  the virials of the external forces (the Feynman forces) acting
point on the boundary at infinity. For finite regions with arbitrary on the nuclei. These forces vanish in an equilibrium geometry
boundaries this will in general not be the case. However, if the and in this case/(Q) = V(Q). In this situation, eq 29 becomes
regionQ is bounded by a surface though which tie flux in
Vp(r) vanishes, the(Q) = 0, K(Q) = G(R2), and the kinetic —T(RQ) = T(R2) + V(RQ) = E(Q) (30)
energy is well-defined, as it is for the total system.
Constraining the integrdl(Q) to vanish is, however, not a  andEe(€2) now equalsE(L2), the usual fixed-nucleus energy of
satisfactory way of defining the open system because thethe B—O approximatiors®3!
condition is not relatable to any observed property of the density Comparison with Experiment. We may now begin our
and an infinitesimal motion of the nuclei will in general result ultimate test of the zero-flux boundary condition: Does it predict
in a non-vanishing flux making such a choice unsuitable. What properties in agreement with experiment? Shortly after chemistry
is required is a boundary condition that is defined by the electron was organized into disciplines, it was recognized that atoms,
density and evolves with any and all changes in this physically and in particular “functional” groupings of atoms, exhibited
measurable distribution function. characteristic properties that enabled one to detect their presence
It is at this stage in the development that one realizes the in any molecule and to predict the properties resulting from
physics we have uncovered up to this point is already rooted in their presence. Indeed, it was early on discovered that atomic
the properties of the charge distribution, in that one finds that and group properties were not only classifiable as characteristic
the necessary boundary condition is a natural result of the they could in some cases be transferable, as found for molar
dominant topological property exhibited by the electron density ~ volume, molar refraction, electric and diamagnetic susceptibili-
that it exhibits maxima at the positions of the nuéfei’ The ties and thermodynamic functiortd, S and C, etc. These
maxima are a result of the dominance of the attractive force properties obeyed “additivity rules”; that is, the molecular value
exerted by the pointlike nuclei on the diffuse distribution of of some property equalled the sum of the additive contributions
electronic charge and in a manner now well-documented, this from its constituent atoms or functional groups. It is these
topological feature results in an exhaustive partitioning of real measured properties that are used to test the zero-flux boundary
space into a set of atomic domai@s each of which is bounded  condition.
by a surfaceq(r;Q), characterized by #cal zero flux in the As important as the recovery of measured, additive properties,
gradient vector field of the electron density, eq 27. The region is the recovery of theonceptof a functional group, the central
building block of experimental chemistry. The concept of a

Vp(r)-n(r)=0  forallr on the surface of2 (27) functional group has been displaced in theoretical approaches
to chemistry, from the central position it continues to play in
Q is bounded by a surface of local “zero-flux in gratd?® The experimental chemistry by the inability of molecular orbital

theory of open systems using the boundary condition given in theory to account for either its existence or properties, a failure
eq 27 is called the quantum theory of atoms in molecules admirably stated by Libit and Hoffmann: “Nothing like this
(QTAIM). logic (of substitutent effects) comes out of molecular orbital
The portion of the atomic surfacr;Q2) that lies at infinity, calculations. Every molecule is treated as a whole and no set
where bothp(r) and Vp(r) vanish, clearly satisfies the zero- of transferable properties associated with a functional group
flux condition. The remainder of an atomic surface is composed emerges® QTAIM, on the other hand, recovers the concept
of surfaces the atom shares with its neighboring atoms, calledof a functional group in its entirety, defining both its form and
interatomic surfaces. Each such surface is defined by the set ofproperties, reflecting the rooting of QTAIM in experiment. Thus
trajectories ofVp(r) that terminate at a “bond critical point”in ~ QTAIM provides the link between molecular orbital theory and
p, a point whereVp(r) = 0. The vectorV p(r) is tangent to its this most fundamental of all chemical concepts.
trajectory at every point and is thus necessarily perpendicular As has now been documented many times over, the atomic
to the normal surface vectar(r). Equation 27 is therefore, and group properties predicted by QTAIM agree with the
satisfied for every point on an interatomic surfa&es.2° additive group contributions measured experimentally. A recent
The zero-flux boundary condition ensures thé®) = 0, that publicatior?® reviews the examples from thermodynamic proper-
K(Q) = G(£2), and that the atomic statement of the virial ties such as molar volumes, heats of formation and the related
theorem, eq 23, reduces to a form identical to that for the properties of strain and resonance energies, to field induced
total system, eq 28. properties such as electric and magnetic susceptibilities including
Pascal’s aromatic exaltation, to properties (infrared and Raman
—2T(R2) = 7(Q2) (28) intensities and related transition probabilities) induced by the
absorption or emission of light. A compendium of articles
Equation 28 applies to any and all regions bounded by a supmitted by workers applying QTAIM to problems rang-
zero-flux surface, and one may use the theorem to define the|ng across Chemistry and solid-state physics has recent|y ap-
energy of an atom in a molecule. The theorem may be recast inpearecf*
its more usual form by adding(€2) to both sides of eq 28 to The most important of all the physical verifications of
yield QTAIM is the common sense observation that “atoms that look
the same have the same properties”. Atoms that look the same
—T(RQ) = T(RQ) + 7(RQ) = E(Q) (29) have the same distribution of charge aatiproperties of the
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atom are found to be transferable to the same extent as is its QTAIM demonstrates the unity of QMa single theory
electron density. This is widely documented for densities derived embraces all that can be measuré@dm the total system,
from both theory and experiment, particularly in biological molecule, or crystal to the atoms of which they are composed.
molecules, as recently summariz&dt was the finding of the

paralleling transferability of the densities of the electrons and Appendix

their kinetic energy for regions of space bounded by zero-flux  £.o the Open System Commutator, Eq 7, to the Surface
surfaces that led to the hypothesis that the virial theorem mightIntegral Eq 9. The symbol *" in eq 8 den’otes the scalar

apply to an atom in a molecule: T(<2) is transferable, then s q4,,¢t of two vectors, one being the gradient vector
is E(Q2) and one has in a single stroke defined an atom with
transferable, additive propertiés. V =idlox + joloy + koloz

wherei, j, andk denote unit, orthogonal vectorsj = j+j =

Conclusi . . AR ; .
onciusions k-k = 1. Carrying out the differentiation indicated in eq 8 yields

The equation of motion for any properyis rewritten in eq R . R
31 with the time derivative placed inside the atomic boundary, (—h2/2m){ Vy*-V(Ay) + yp* Vz(Azp) — Vzw*(Azp) -
leaving only the physically most relevant commutator and vw*-v(Aw)}

current terms, terms that survive even in the case of a stationary i i o
state. The first and final terms cancel, yielding

- (—h2m){y* Vi(Ay) — Viy*(Ap)}
fgapA(r)/at = l/2{(i/h)mlf|[H,A] WL, + cct — o ) )
which indeed equals the difference obtained when the operator
Y{$dSQ) 0 +cc (31) T = —(h%2m)V? acts on the termg* and Ay in eq 7. One
may obtain the final surface term in eq 9 directly from eq 7 by
Every reader, upon reaching this point, has derived eq 31 from Using Green’s theorem which states

Schralinger's equation and knows that it is mathematically 5 ) ]
correct. It is physically correct when the regi@his bounded [ {#V’p — @V°¢} = ${¢Vy — @Vg}-n  with

by a surface _of Ioca_l zero flux in the gradient vector of the p=y*andg = Ai/J
electron density, satisfying Bethe’s experimental dictum that )
“In science you know you know?® Thus eq 31 predicts what Extension to the Many-Electron Case.The only step that

can be measured, and in doing so, it extends quantum mechanicgnay require comment on the extension to the many-electron
to an open systeriThe case of2 = R® now appears as a special Case concerns eq 8. In the many -eIectrpn case, the RHS of'eq
limiting case of the more general one whedeis any region 8 becomes eq A-1, where the summation is over the kinetic
bounded by a zero-flux surface. A recent article provides a 5 A

narrative account of the variational development of QTAIM, (= /Zm)Ziderl fdf' V() {y*V(r)(Ar)y) —

tracing its development from studies on the properties of the v(r) w*(A(rl)w)} (A-1)
electron density® '

QTAIM, by providing the quantum basis for an atom in a energy operators of all electrons, including;. A coordinate
molecule, necessarily recovers all of the related concepts ofr; that is integrated over all space is differentiated from the
experimental chemistry. In addition to the atoms exhibiting coordinater; that is integrated over the open systein
additive, characteristic, and measurable properties, the theoryApplying Gauss’ theorem to a term in the sum fe= rq, the
yields definitions of molecular structure and structural stability symbol &' denoting the removal of coordinate from the
in terms of the dynamics of the gradient vector fieldorf),?” integration over all space, yields eq A-2. Each such term
and of electron localization/delocalization determined by the
atomic expectation value of the exchange defs#and given (—h2/2m)f‘_3_.drl fdr" $dS(r) {w* V(r)Ar)y) —

hysical expression in the topology of the Laplacian of the A
gleyctron der?sity?? Poesy P V() w*(AlrJy)}-n(r)) (A-2)

The definition of a bond path and hence of molecular structure \,nishes hecause the surface term reduces to a term proportional
are inseparable from the definition and existence of an inter- to the flux in the curreni(r;) in the surface at infinity, eq A-3.

atomic surface, both of which are defined by the topological the only term that survives is obtained when the surface term
behavior associated with the presence of a {3 critical point?©

It has recently been demonstrated that QTAIM is “robust” when ,_ 32 " VA *7(r Vo)) —
extended to the relativistic domain and the entire theory can be( R712m) [odr, [de $dS(ry) {A(r D[y V(r)y

applied with the same zero-flux boundary condition across the Yv(r)yp*]}en(r) (A-3)
periodic table-including the actinide&! It is difficult to
understand anyone doubting that the zero-flux boundary is a
fundamental property of matter, providing the basis for the
generalization of physics to its atomic constituents. Two atoms , A
that share a zero-flux interatomic surface in equilibrium are (—h2/2m)de(rl;Q) de {w*Vr)Ar)y) -

bonded to one anothé&?*243The presence of the bond path is v(r,) w*(A(rl)ll/)}'n(rl) (A-4)
but a useful way of depicting and summarizing which pairs of

atoms share an interatomic surface. That this shorthand notatiorthe term that yields the flux in the currept in eq 19.
mimics the way in which the same information is conveyed by

the structures that evolved from experimental chemistry is surely References and Notes

one of the most powerful of all the physical vindications of the (1) Dalton, J.New System of Chemical PhilosopHgcsimile ed.;
zero-flux boundary condition. Dawson: London, Manchester, 1808.

applies to the coordinatg defining the surface of2, as given

in eq A-4, which, upon comparison with eq 18 of the text, is



7972 J. Phys. Chem. A, Vol. 111, No. 32, 2007

(2) Schralinger, E.Ann. D. Phys1926 79, 361.

(3) Bader, R. F. W.; Srebrenik, S.; Nguyen Dang, TJTChem. Phys.
1978 68, 3680-3591.

(4) Bader, R. F. WPhys. Re. 1994 B 49 13348-13356.

(5) Bader, R. F. W.; Nguyen-Dang, T. Adv. Quantum Cheni981
14, 63—-124.

(6) Schwinger, JPhys. Re. 1951, 82, 914-927.

(7) Heisenberg, WZ. Phys.1926 38, 411.

(8) One of the conceptual advantages of deriving the theory of an atom
in a molecule from Schwinger’s principle is that it yields both Sdimger's

Bader

(24) Schrdinger, E.Ann. D. Phys1927, 82, 265.

(25) Bader, R. F. W.; De-Cai, B. Chem. Theory Com@005 1, 403~
414.

(26) Bader, R. F. W.; Beddall, P. M. Chem. Physl972 56, 3320
3329.

(27) Bader, R. F. W.; Nguyen-Dang, T. T.; Tal, Rep. Prog. Phys.

1981, 44, 893-948.

(28) Any trajectory traced out by the gradient of the density satisfies
the zero-flux condition at every point with the exception of those that
terminate at a nuclear position where the density exhibits a cusp and its

equation and the Heisenberg equation of motion in a single unified approach, gradient is not defineg® The only trajectories that define a two-dimensional

by combining the action principle with Dirac’s transformation theory.
(9) Bader, R. F. W.; Cheeseman, J. R.; Laidig, K. E.; Breneman, C.;
Wiberg, K. B.J. Am. Chem. S0d.99Q 112 6530-6536.

(10) Wiberg, K. B.; Bader, R. F. W.; Lau, C. D. H. Am. Chem. Soc.
1987 109 1001-1012.

(11) Cremer, D.; Kraka, E.; Slee, T. S.; Bader, R. F. W.; Lau, C. D. H,;
Nguyen-Dang, T. T.; MacDougall, P.J.Am. Chem. So2983 105 5069—
5075.

(12) Cremer, D.; Childs, R. F.; Kraka, E. hhe Chemistry of the
Cyclopropyl Group John Wiley & Sons Ltd: New York, NY 1995yol.

2, pp 339-409.

(13) Bader, R. F. W. Atoms in Molecules. Encyclopedia of Compu-
tational ChemistryJohn Wiley and Sons: Chichester, U.K., 1998; Vol. 1.

(14) Keith, T. A.; Bader, R. F. WCan. J. Chem199§ 74, 185-200.

(15) Chatt, J.; Duncanson, L. A. Chem. Socl953 2329.

(16) Corfes-Guzma, F.; Bader, R. F. WCoord. Chem. Re 2005 249
633-662.

(17) Bader, R. F. W.; Matta, C. F.; Cost&suznia, F.Organometallics
2004 23, 6253-6263.

(18) Bader, R. F. WAtoms in Molecules: A Quantum Thep@xford
University Press: Oxford, U.K., 1990.

(19) A reader unfamiliar with Gauss’ or divergence theorem is referred
to my booK® or to volume Il of Feynman’s Lectures on Phy3fcéor a
readable account.

(20) Feynman, R. P.; Leighton, R. B.; Sands, We Feynman Lectures
on Physics. Vol tl Addison-Wesley Publishing Co. Inc.: Reading, MA,
1964.

(21) Schidinger, E.Ann. D. Phys1926 81, 109.

(22) Indeed, the first variational derivation of the theory of atoms in
molecules was obtained by generalizing Sdimger’s derivation of his wave
equation to a system with finite boundaries, a generalization show to be
possible only if the atom was bounded by a surface of zero flux in the
gradient vector field of the electron densify.

(23) Srebrenik, S.; Bader, R. F. W. Chem. Phys1975 63, 3945~
3961.

manifold and satisfy the zero-flux condition at every point are those that
terminate at a bond critical point where the gradient vector of the density
vanishes.

(29) Bader, R. F. WTheor. Chem. Ac2002 107, 381-382.

(30) In a nonequilibrium geometry, the atomic statement of the virial
theorem is again in accord with the statement for the total molecule, the
kinetic energy now containing a component from the atom’s share of the
virial of the Feynman forces acting on the nuclei, the quamit®)3?, to
yield —=T(Q) = T(Q) + V(Q) + W(Q) = E(Q) + W(Q). Thus the energy
of an atom in a molecule is always defined and, like all atomic properties,
is additive.

(31) Keith, T. A. InQuantum Theory of Atoms in Molecules From Solid
State to DNA and Drug DesigMatta, C. F., Boyd, R. J., Eds.; Wiley-
VCH: Weinheim, Germany, 2007; pp 6D4.

(32) Libit, L.; Hoffmann, R.J. Am. Chem. So@74, 96, 1370-1383.

(33) Matta, C. F.; Bader, R. F. W. Phys. Chem. 2006 110 6365~
6371.

(34) The Quantum Theory of Atoms in Molecules: Fom Solid State to
DNA and Drug DesignMatta, C. F., Boyd, R. J., Eds.; Wiley-VCH:
Weinheim, Germany, 2007.

(35) Bethe, H. ObituaryNew York Time2005 March 18.

(36) Bader, R. F. WMonatsh. Chem2005 136, 819-854.

(37) Bader, R. F. W.; Stephens, M. E. Am. Chem. Sod975 97,
7391-7399.

(38) Fradera, X.; Austen, M. A.; Bader, R. F. W. Phys. Chem. A
1999 103 304-314.

(39) Bader, R. F. W.; Heard, G. lJ. Chem. Phys1999 111, 8789~
8798.

(40) Bader, R. F. WJ. Phys. Chem. A998 102, 7314-7323.

(41) Anderson, J.; Ayers, P. W. Submitted for publication.

(42) Hernadez-Truijillo, J.; Corts-Guznia, F.; Fang, D. C.; Bader, R.

F. W. Faraday Discuss2007, 135 79—95.

(43) Bader, R. F. W.; Hefmalez-Trujillo, J.; Corte-Guzma, F. J.

Comput. Chem2007, 28, 4—14.



