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This paper demonstrates that it is straightforward to develop the theory of an atom in a moleculesthe extension
of quantum mechanics to an open systemsby deriving the necessary equations of motion from Schro¨dinger’s
equation, followed by a comparison of the predicted properties with experiment to determine the correct
boundary condition. Although less fundamental than the variational derivation of the quantum theory of atoms
in molecules, this heuristic approach makes the quantum mechanics of an atom in a molecule accessible to
“everyman” possessing a knowledge of Schro¨dinger’s equation, aiding its general acceptance by experimental
chemists.

Extending Quantum Mechanics to an Atom in a Molecule

It is just over two hundred years since Dalton1 proposed his
atomic theory and just over 80 years since Schro¨dinger derived
his wave equation.2 The purpose of the present paper is to
demonstrate that it is relatively simple to combine Dalton’s idea
of the atomic nature of matter with Schro¨dinger’s equation by
showing that quantum mechanics applies to an atom bound in
a molecule or in a crystal. An atom bound to other atoms may
exchange energy and/or charge with its neighbors when it
undergoes motion relative to the other atoms. A bound atom is
thus described as an open system.

The derivation of the physics of an open system is ac-
complished in two steps. One first uses Schro¨dinger’s equation
to determine the time rate-of-change of the average value of a
property, the property’s “equation of motion”. This is done for
the total system and for any of its possible fragments, bringing
one to the second step. Out of all possible partitionings of a
system, how does one determine the one that yields open
systems corresponding to the atoms of chemistry? It is at this
point that experiment comes to the aid of theory. Just as one
invokes boundary conditions to delimit the mathematically
acceptable solutions found for Schro¨dinger’s equation to those
that describe physically realizable states, so it is equally
necessary to apply a boundary condition to delimit the equations
of motion derived for arbitrary fragments of some total system,
to the open systems whose predicted properties yield agreement
with experiment. By applying a boundary condition such that
the properties predicted for the resulting open systems recover
the experimentally measured additive properties associated with
an atom in a molecule, one obtains a unique partitioning of any
system into atoms. The uniqueness of the partitioning is assured
once this condition is satisfied, because the experimental
predictions of quantum mechanics are unique.

This heuristic approach to defining the physics of an atom
in a moleculestheory followed by appeal to experimentsis less
elegant than its variational derivation3-5 from Schwinger’s
principle of least action,6 but it has two distinct advantages: it
makes the physical validity of the theory accessible to “every-
man” and demonstrates its rooting in experiment.

From Schro1dinger’s Equation to an Equation of Motion

An equation of motion completely determines the physics
associated with any measurable property. It is worth-
while recalling that in the Heisenberg approach,7 one that
preceded Schro¨dinger’s “wave mechanics”, quantum mechanics
is expressed in terms of the equations of motion for
the observables, emphasizing the ties that link theory to
observation. Thus developing the physics of an atom in a
molecule entails the two basic concepts of quantum mechan-
ics: Schro¨dinger’s equation and the equations of motion for
the observables.8

Although this is not the path generally followed in studies
of quantum chemistry that tend to focus on the orbital approach,
it is the path that links chemistry with physics. Molecular orbital
theory is clearly essential to understanding chemistry, but why
should one stop there when the world of physics lies at its
doorstep? In seeking the physics of an atom in a molecule, one
is obliged to cross the threshold from orbital theories and their
associated models and step deeper into the world of physics.
Besides, the physically sound models derived from orbital
arguments, those that relate to measurable properties, are
recovered by the physics of an atom in a molecule. These
include the hybridization model as applied to atomic stability,9,10

homoaromatic conjugation,11,12 “resonance”13 and strain ener-
gies,10 NMR deshielding of an aromatic proton,14 confirmation
of the presence of the Chatt-Duncanson model of dπ-pπ*
back-bonding15 in the quadrupolar polarization of the
ligand density16 and the predictions of frontier orbital theory,17

to cite a few examples. So one is not asked to give up orbital
models, but rather to relate them more directly to the underlying
physics.16 If hybridization predicts planar nitrogen to be more
stable than pyramidal in some reaction, why not make the
argument quantitative by calculating the change in the energy
of the nitrogen atom incurred in the reaction?

The Equation of Motion. The change with time of the
average value of some propertyA (the expectation value of its
associated operatorÂ, the quantity〈Ψ, ÂΨ〉) is given by the
Heisenberg equation of motion. When expressed in the language
of wave functions, the Heisenberg equation is given by
eq 1.

d〈Ψ, ÂΨ〉/dt ) (i/p)〈Ψ, [Ĥ,Â]Ψ〉 (1)
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Equation 1 is expressed in terms of the “bra-ket” notation to
take advantage of its compact nature. It is rewrittenbelow in
terms of the more usual integral notation

When the system is in a stationary state described by the
function ψ, eq 1 becomes

The vanishing of the commutator in eq 2 may be derived
independently. Expanding the commutator and averaging yields

This result follows from the hermitian nature ofĤ, which may
act to the left to yield〈ψ|ĤÂ|ψ〉 ) 〈Ĥψ|Âψ〉 ) E〈ψ|Â|ψ〉 or to
the right to yield the equivalent result,〈ψ|ÂĤ|ψ〉 ) E〈ψ|Â|ψ〉.
Whether or not an operator has this property of acting to the
left or to the right depends upon the domain of integration, and
in general, when the domain is restricted, as it is in delineating
the boundaries of an open system, this property is lost. One
may prove this to oneself by considering the momentum operator
-id/dx in one-dimension. One finds that

The productψ*ψ ) F, and the density together with its
derivatives, vanish on the boundaries at infinity, but not when
the boundary has a finite value. In three dimensions, the
nonvanishing remainder is an integral over the surface that
encloses the open system. This simple example demonstrates
the feature that distinguishes the physics of an open system from
that of the total system of which it is a part: the loss of the
Hermitian character of operators and the resulting appearance
of surface integrals.

We are now ready to consider the extension of the station-
ary state expression of the equation of motion, eq 2, to an
open systemΩ; that is, we wish to evaluate the quantity
〈ψ|[Ĥ,Â]|ψ〉Ω, where the subscript implies that the averaging
is taken over the region of the open system. Concomitant with
the loss of hermiticity is the necessity of now requiring the
expectation value of an operator to be real. Thus one must
always consider the sum of the operator average and its complex
conjugate (cc) over an open system to be certain that the
expectation values are real numbers. Thus we consider the
quantity 1/2{〈ψ|[Ĥ,Â]|ψ〉Ω + cc}. We shall in the derivation
consider just one term in the expression, the cc being readily
added at the end of the derivation.

Equation of Motion for an Open System.The procedure
followed here is given in the bookThe Quantum Theory of
Atoms in Molecules, a Quantum Theory.18 Expanding the
commutator as in eq 3 and averaging over an open systemΩ
yields

To proceed, one puts the expression in maximum correspon-
dence with the total system result by adding and subtracting
the term〈Ĥψ|Â|ψ〉Ω to eq 5 to obtain

The first two terms on the RHS of eq 6 cancel because both
equalE〈ψ|Â|ψ〉Ω, as is the case of a total system, leaving

At this point and without the any loss of generality (as
demonstrated below) one assumes a one-electron Hamiltonian
Ĥ ) -(p2/2m)∇2 + V̂ ) T̂ + V̂. In addition, the potential energy
operatorV̂ is assumed to be of the form for an atomic or
molecular Hamiltonian consisting of electron-nuclear and
electron-electron interactions and not containing any gradient
terms. This being the case, the only terms that survive the
differencing in eq 7 are those involving the kinetic energy
operatorT̂ and the operatorÂ to yield eq 8,

a step that is amplified in the Appendix. One now makes use
of Gauss’ theorem stating that the volume integral of the
divergence of a vector as found in eq 8 may be expressed in
terms of a surface integral bounding the volumeΩ, transforming
the RHS of eq 8 into a surface integral,19,20

The unit vectorn(r ) is normal to the surface at the pointr .
Only components of the vector in the curly brackets that are
parallel ton(r ) survive in the scalar product.

The term appearing in the surface integral is proportional to
the quantum mechanical current density for the operatorÂ,
making eq 9 a result of physical importance. That is, eq 9 may
be expressed as

where the current density for property A is defined as

The vector currentjA(r ) has the dimensions of a velocity, giving
the velocity of the density of the propertyA at some pointr in
space. The component of the surface integral of the current
normal to the surface of the open system, the term described
by jA(r )‚n(r ), is termed the “flux”. This result is demanded by
physics, because, in the general time-dependent case, there will
be a flow of matter and energy across the surface of an open
system. Now of course in a stationary state, there is no current
flow, but the surface term remains as an essential component
of the properties of an open system, appearing as it does on an
equal footing with the commutator average. The name “flux”
is retained even in this case following Feynman’s suggestion:
“Although it is not the flow of anything, we still call it the ‘flux’.
... We generalize the word ‘flux’ to mean the “surface integral
of the normal component’ of a vector.”20

We can now state the equation of motion for operatorÂ for
an open systemΩ in a stationary state, multiplying the results
in eq 10 by (i/p) to obtain

Unlike the total system, for which the commutator average
vanishes, eq 2, the corresponding quantity for an open system

d∫Ψ*Â Ψ dτ/dt ) (i/p)∫Ψ*[ Ĥ,Â]Ψ dτ (1)

〈ψ, [Ĥ,Â]ψ〉 ) ∫ψ*[ Ĥ,Â]ψ dτ ) 0 (2)

〈ψ|ĤÂ - ÂĤ|ψ〉 ) 〈ψ|ĤÂ|ψ〉 - 〈ψ|ÂĤ|ψ〉 ) 0 (3)

∫(-i dψ/dx)*ψ dx ) ∫ψ*(-i dψ/dx) dx +

i d(ψ*ψ)/dx|-∞
+∞ (4)

〈ψ|ĤÂ - ÂĤ|ψ〉Ω ) 〈ψ|ĤÂ|ψ〉Ω - 〈ψ|ÂĤ|ψ〉Ω (5)

〈ψ|ĤÂ - ÂĤ|ψ〉Ω ) 〈Ĥψ|Â|ψ〉Ω - 〈ψ|ÂĤ|ψ〉Ω +
〈ψ|ĤÂ|ψ〉Ω - 〈Ĥψ|Â|ψ〉Ω (6)

〈ψ|ĤÂ - ÂĤ|ψ〉Ω ) 〈ψ|ĤÂ|ψ〉Ω - 〈Ĥψ|Â|ψ〉Ω (7)

〈ψ|ĤÂ - ÂĤ|ψ〉Ω ) ∫Ω
dr (-p2/2m)∇‚{ψ*∇(Âψ) -

∇ψ*( Âψ)} (8)

〈ψ|[Ĥ,Â]|ψ〉Ω ) (-p2/2m) I dS(r s;Ω) {ψ*∇(Âψ) -
∇ψ*( Âψ)}‚n(r ) (9)

〈ψ|[Ĥ,Â]|ψ〉Ω ) -ip I dS(r s;Ω) jA(r )‚n(r ) (10)

jA(r ) ) (p/2mi){ψ*∇(Âψ) - ∇ψ*( Âψ)} (11)

1/2{(i/p)〈ψ|[Ĥ,Â]|ψ〉Ω + cc} )
1/2IdS(r s;Ω) jA(r )‚n(r ) + cc (12)
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equals the surface integral of the normal component of the
current of the propertyA, the flux in the current ofA. It is this
very property that makes the properties of an open systemsof
an atom in a moleculesdifferent from the corresponding
properties for the entire molecule. The same mathematical
procedures may be employed to generalize the time-dependent
expression of the equation of motion to an open system to yield
eq 13.18 The quantityFA(r ) is the density of propertyA, equal

to 1/2{(ÂΨ)*Ψ + Ψ* ÂΨ}, and its integral overΩ gives the
open system average of A. Equation 13 relates the time rate-
of-change of this average value to the commutator, to the flux
in the property current, and to a surface term that takes into
account the contribution to the change in the average value of
A arising from the change in the surface with time, the term
∂S/∂t. In a stationary state, the commutator average is balanced
by the current flux, eq 12.

From the One- to the Many-Electron Case

Schro1dinger’s Definition of the Electron Density and Its
Current. Extending the equation of motion for an open system
to the many-electron case brings forth a very important tie with
observation, as the mathematical procedure involved is identical
to that used to define the measurable electron density, as done
by Schrödinger in the fourth and final of the papers he published
in 1926.21 It is worth one’s while to consider Schro¨dinger’s
remarks concerning the reasons he gives for defining the electron
density. He initially ascribed physical meaning to the “ψ-
function”, having referred to “ψ-vibrations” “as something quite
real.” However, in the fourth paper he notes that “We have
repeatedly called attention to the fact that theψ-function itself
cannot and may not be interpreted directly in terms of three-
dimensional spaceshowever much the one-electron problem
tends to mislead us on this pointsbecause it is in general a
function in configuration space (now referred to as Hilbert
space), not real space.” Thus in the fourth paper he discards
the idea of using the “ψ-function” in favor of the “weight-
function ψ*ψ”, which, when subjected to the appropriate
integration, yields the “density of electricity” at an arbitrary point
in space, relegating theψ-function to the role of determining
the “weight-function ψ*ψ”. He obtained the “density of
electricity” (the electron densityF) by integrating the product
ψ*ψ over the coordinates of all the electrons but one, whose
position is fixed at a point in space, a procedure he denotes by
the symbol∫ψ*ψ dx′, and then repeats for allN electrons.

Schrödinger’s definition ofF needs to be modified only to
take into account electron spin, something that is done by simply
including a summation over all spins, in addition to the
integration over the coordinates of all electrons but one (whose
coordinates are denoted by the vectorr ), a procedure presently
denoted for allN electrons by the RHS of eq 14. One must

realize that one is not simply “integrating over the coordinates
of the remaining electrons” in taking this average but is instead
averaging the interactions of the density atr over the motions
of the remaining electrons throughout “configuration space”.
To quote Schro¨dinger (his italics): “ThewaVe mechanical
configuration of the system is asuperpositionof many, strictly

speaking, ofall, point-mechanical configurations kinematically
possible. Thus, each point-mechanical configuration contributes
to the true wave-mechanical configuration with a certainweight,
which is given precisely byψ*ψ.”21

Schrödinger realized that in addition to the definition of the
“electric density” as a single-particle concept in real space, it
was equally necessary to describe its flow. Hence his derivation
in the same paper of the “equation of continuity of electricity”
through the definition of the single-particle current density. This
equation, which applies equally to the classical flow of current,
states that the change in density of charge per unit volume of
space is given by the net outflow or flux ofj (r ) per unit volume
in the neighborhood of the pointr , a flow that is described
mathematically by the divergence of the vector current, that is,

His definition of the currentj(r) is identical to that derived above
in eq 11 with the operatorÂ set equal to unity and with the
extension to the many-electron case determined by the same
averaging as used in the definition of the density, in eq 14,

It is important to note that althoughψ is the many-electron wave
function, the derivative is taken with respect to the coordinates
of the single electron denoted byr : it is a one-electron operator
averaged over the motions of the remaining electrons, as is the
density whose flow it describes.

Generalization of the Definition of the Density and Its
Current to All Properties. The physics of an open system
requires that one extend Schro¨dinger’s definition of the electron
and current densities to all properties, as is evident in eq 10
that equates the commutator average for the propertyA to the
flux in its vector current through the surface of the open system.
Thus, in anticipation of its averaging over an open system, the
density of a property defined by the Hermitian operatorÂ is
given in its real form by

and its associated current as

Both expressions differ from their one-electron system coun-
terparts only in being averaged over the coordinates of the
remaining electrons. It is important to note that the operator
Â(r ), as does the gradient∇r, acts only on the particle with
coordinater .

Many-Electron Equation of Motion for an Open System.
We are now in a position to rewrite the equation of motion for
the operatorÂ for an open systemΩ for the many-electron case

This result is no different in form nor physical content to that
given previously for the one-electron case, eq 13, other than
that the property density and its current involve averages over
the coordinates of the remaining electrons. The abbreviated
notation used for the commutator in eq 19 is given explicitly
below, emphasizing once again that the operatorÂ acts only
on the coordinates of the electron with position vectorr, the
coordinate that is integrated over the open systemΩ.

d∫Ω
dr FA(r )/dt ) 1/2{(i/p)〈Ψ|[Ĥ,Â]|Ψ〉Ω + cc} -

1/2{IdS(Ω) jA‚n + cc} + {IdS(Ω) (∂S/∂t)FA(r ) + cc} (13)

F(r ) ) N∫dτ′ ψ*ψ (14)

dF(r )/dt ) ∇‚j (r ) (15)

j (r ) ) N(p/2mi)∫dτ′ {ψ*∇rψ - ψ∇rψ*} (16)

FA(r ) ) 1/2{∫dτ′ (ψ* Â(r )ψ + (Â(r )ψ)*ψ)} (17)

jA(r ) ) N(p/2mi)∫dτ′ {ψ*∇r(Â(r )ψ) - ∇rψ*( Â(r )ψ)} (18)

d∫Ω
FA(r )/dt ) 1/2{(i/p)〈Ψ|[Ĥ,Â]|Ψ〉Ω + cc} -
1/2{IdS(Ω) jA‚n + cc} + 1/2{IdS(Ω) ∂(S/∂t)FA(r )} (19)
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The corresponding statement of the equation of motion for a
system in a stationary state is identical to that given previously
for the one-electron case in eq 12 with the understanding that
the current refers to the definition given in eq 18 for the many-
electron case and the operatorÂ acts on the particle whose
coordinates denoted byr, are integrated over the open system
Ω as specified in eq 21.

The similarity in form and physical content of the expressions
for the equations of motion for the one- and many-electron case
are striking.This brings to the fore that the single-particle nature
of quantum mechanics in a many-particle system is the result
of following the Heisenberg approach, transforming Schro¨d-
inger’s equation into an equation of motion.The Heisenberg
approach brings one directly to the physics of the measurable
expectationvalues. We shall find that this approach enables one
to defineall properties, including those that depend upon inter-
particle coordinates such as the energy, in terms of real-space
density distributions.

One notes that all of this requires that the operatorÂ refer
only to the coordinates of the particle whose properties are
averaged over the open system. Though this step follows
naturally from the field theoretic approach employed in deriving
the physics of an open system from Schwinger’s principle, one
that emphasizes the single-particle nature of matter, it is
recovered in the present approach by defining the density and
its current, as done by Schro¨dinger. These are the tools necessary
for the application of his equation to predicting and understand-
ing the properties of matter. Schro¨dinger concludes his fourth
paper by expressing his hope that the density and its current
prove useful in the elucidation of the electric and magnetic
properties of atoms and molecules. It is clear to the reader at
this point that with the four papers published in 1926, Schro¨-
dinger provided all of the physics required to extend quantum
mechanics to an open system.22,23

Using the Equation of Motion To Define an Atom in a
Molecule

Determining Properties from the Equation of Motion. The
equations of motion for an open system, eqs 19 and 21, define
all measurable propertiesA of an open system. Some properties
are determined directly by the simple averaging of the corre-
sponding operator, whereas others, such as the energy of an
open system, require the evaluation of the appropriate com-
mutator in the associated equation of motion. Two of the most
important of these resulting theorems are obtained by settingÂ
equal to the momentum operatorp̂ of an electron whose time
rate-of-change determines the force acting on the electron, the
Ehrenfest force, and the virial operatorr̂ ‚p̂, the product of the
position and momentum operators for an electron, whose
equation of motion yields the virial theorem.18 The evaluation
of the associated commutators and surface integrals for the
resulting Ehrenfest force and virial theorems may be found
elsewhere. We draw attention here only to the appearance in
these expressions of the third and final single-particle densities
introduced by Schro¨dinger, the energy density tensor,σ5(r )
defined in eq 22.24 This quantity, with dimensions of energy

per unit volume or equivalently, force per unit area, is termed
a stress tensor. It is in fact the current of the momentum density
and it thus appears as the flux in the Ehrenfest force theorem
determining the force acting on the surface of an open system.

The stress tensor is a most remarkable quantity. Its diver-
gence, the quantity-∇ ‚σ5(r ) determines the force acting on
the electron density at the pointr .18,25 Thus the interactions of
an electron at a point in space with all of the remaining electrons,
together with its interactions with the nuclear framework, are
all condensed into a density expressible in real space. The virial
of this force, the quantity-r ‚∇‚σ5(r ), determines the electronic
potential energy of the electrons, a quantity that once again
condenses the many-electron interactions and those with the
nuclei into an energy density expressible in real space. Clearly,
one may determine the force acting on a region of space or
determine its potential energy simply by integrating the ap-
propriate density. A most remarkable result!

The open system statement of the virial theorem is given by

T(Ω) is the kinetic energy of the electrons, the termsV b(Ω)
and V s(Ω) are the virials of the forces acting over the basin
and the surface of the atom, which sum to yield the totalV (Ω),
the potential energy of the electrons. The final termL(Ω) is
foreign to the virial theorem for the total system which states
that -2T ) V . It is the open system average of a quantity
proportional to the Laplacian of the density, the term-(p2/
4m)∇2F(r ). The stage is now set to complete the derivation of
the quantum theory of atoms in molecules by determining the
boundary of the open system such that its properties including
its energy, as determined by the equations of motion, agree with
the measured values assigned to atoms in molecules.

Choosing the Boundary of the Open System.It is best to
begin with the property that would appear to be the most
difficult, if not perhaps impossible to spatially partition, the
energy. How can one partition the energy of repulsion between
the electrons and between the nuclei into atomic contributions?
The literature records many failed attempts, but of course
physics provides the answer by providing single-particle densi-
ties of all properties, including the energy. So we begin with
the virial theorem, as did the historical development of the theory
of atoms in molecules.26 The study of the kinetic energy of the
electrons leads immediately to a quantum constraint on the
definition of the boundary. There are two ways of defining the
kinetic energy density and hence the kinetic energy of some
region Ω. One is the “Schro¨dinger kinetic energy”, the form
appearing in his equation and labeledK(r ),

and the other, the positive definite form used by him in the
functional he varied to obtain his wave equation, labeledG(r ),

Though both kinetic energy densities integrate to the same value
over all space, they differ locally by a term proportional to the
Laplacian of the density, as indicated in eq 26. Gauss’ theorem
is again used in the final two terms of this equation to transform

(i/p)〈Ψ|[Ĥ,Â]|Ψ〉Ω + cc≡
(i/p)N∫Ω

dr ∫dτ′ {Ψ[Ĥ,Â(r )]Ψ} + cc (20)

1/2{(i/p)〈ψ|[Ĥ,Â(r )]|ψ〉Ω + cc} )
1/2IdS(r s;Ω) jA(r )‚n(r ) + cc (21)

σ5(r ) ) (p2/4m)∫dτ′ {∇(∇ψ*)ψ +

ψ*∇∇ψ - ∇ψ*∇ψ - ∇ψ∇ψ*} (22)

-2T(Ω) ) V b(Ω) + V s(Ω) + L(Ω) ) V (Ω) + L(Ω) (23)

∫Ω
dr K(r ) ) -(p2/4m)∫Ω

dr {ψ*∇2ψ +

ψ∇2ψ*} ) K(Ω) (24)

∫Ω
dr G(r ) ) (p2/2m)∫Ω

dr ∇ψ* ‚∇ψ ) G(Ω) (25)
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a volume integral of the gradient of a vector,∇‚∇F(r ), the term
L(Ω) in eq 23, into a surface integral of the flux in the vector
∇F(r ). The kinetic energies yield identical values when inte-
grated over all space because the flux in∇F(r ) vanishes at every
point on the boundary at infinity. For finite regions with arbitrary
boundaries this will in general not be the case. However, if the
regionΩ is bounded by a surface though which thenet flux in
∇F(r ) vanishes, thenL(Ω) ) 0, K(Ω) ) G(Ω), and the kinetic
energy is well-defined, as it is for the total system.

Constraining the integralL(Ω) to vanish is, however, not a
satisfactory way of defining the open system because the
condition is not relatable to any observed property of the density
and an infinitesimal motion of the nuclei will in general result
in a non-vanishing flux making such a choice unsuitable. What
is required is a boundary condition that is defined by the electron
density and evolves with any and all changes in this physically
measurable distribution function.

It is at this stage in the development that one realizes the
physics we have uncovered up to this point is already rooted in
the properties of the charge distribution, in that one finds that
the necessary boundary condition is a natural result of the
dominant topological property exhibited by the electron densitys
that it exhibits maxima at the positions of the nuclei.18,27 The
maxima are a result of the dominance of the attractive force
exerted by the pointlike nuclei on the diffuse distribution of
electronic charge and in a manner now well-documented, this
topological feature results in an exhaustive partitioning of real
space into a set of atomic domainsΩ, each of which is bounded
by a surfaceS(r ;Ω), characterized by alocal zero flux in the
gradient vector field of the electron density, eq 27. The region

Ω is bounded by a surface of local “zero-flux in gradF”.26 The
theory of open systems using the boundary condition given in
eq 27 is called the quantum theory of atoms in molecules
(QTAIM).

The portion of the atomic surfaceS(r ;Ω) that lies at infinity,
where bothF(r ) and ∇F(r) vanish, clearly satisfies the zero-
flux condition. The remainder of an atomic surface is composed
of surfaces the atom shares with its neighboring atoms, called
interatomic surfaces. Each such surface is defined by the set of
trajectories of∇F(r ) that terminate at a “bond critical point” in
F, a point where∇F(r ) ) 0. The vector∇ F(r ) is tangent to its
trajectory at every pointr and is thus necessarily perpendicular
to the normal surface vectorn(r ). Equation 27 is therefore,
satisfied for every point on an interatomic surface.18,28,29

The zero-flux boundary condition ensures thatL(Ω) ) 0, that
K(Ω) ) G(Ω), and that the atomic statement of the virial
theorem, eq 23, reduces to a form identical to that for the
total system, eq 28.

Equation 28 applies to any and all regions bounded by a
zero-flux surface, and one may use the theorem to define the
energy of an atom in a molecule. The theorem may be recast in
its more usual form by addingT(Ω) to both sides of eq 28 to
yield

The atomic virialV(Ω), the virial of all of the forces acting on
the atom, is the electronic potential energy of the atom. It defines
the electronic energyEe(Ω). V(Ω) differs from the usual
definition of the potential energy in a molecular system, the
quantityV, that equals the electron-nuclear attractive energy,
and the electron-electron and nuclear-nuclear energies of
repulsion, in that it contains in addition to these contributions,
the virials of the external forces (the Feynman forces) acting
on the nuclei. These forces vanish in an equilibrium geometry
and in this caseV(Ω) ) V(Ω). In this situation, eq 29 becomes

andEe(Ω) now equalsE(Ω), the usual fixed-nucleus energy of
the B-O approximation.30,31

Comparison with Experiment. We may now begin our
ultimate test of the zero-flux boundary condition: Does it predict
properties in agreement with experiment? Shortly after chemistry
was organized into disciplines, it was recognized that atoms,
and in particular “functional” groupings of atoms, exhibited
characteristic properties that enabled one to detect their presence
in any molecule and to predict the properties resulting from
their presence. Indeed, it was early on discovered that atomic
and group properties were not only classifiable as characteristic
they could in some cases be transferable, as found for molar
volume, molar refraction, electric and diamagnetic susceptibili-
ties and thermodynamic functionsH, S, and Cp etc. These
properties obeyed “additivity rules”; that is, the molecular value
of some property equalled the sum of the additive contributions
from its constituent atoms or functional groups. It is these
measured properties that are used to test the zero-flux boundary
condition.

As important as the recovery of measured, additive properties,
is the recovery of theconceptof a functional group, the central
building block of experimental chemistry. The concept of a
functional group has been displaced in theoretical approaches
to chemistry, from the central position it continues to play in
experimental chemistry by the inability of molecular orbital
theory to account for either its existence or properties, a failure
admirably stated by Libit and Hoffmann: “Nothing like this
logic (of substitutent effects) comes out of molecular orbital
calculations. Every molecule is treated as a whole and no set
of transferable properties associated with a functional group
emerges.”32 QTAIM, on the other hand, recovers the concept
of a functional group in its entirety, defining both its form and
properties, reflecting the rooting of QTAIM in experiment. Thus
QTAIM provides the link between molecular orbital theory and
this most fundamental of all chemical concepts.

As has now been documented many times over, the atomic
and group properties predicted by QTAIM agree with the
additive group contributions measured experimentally. A recent
publication33 reviews the examples from thermodynamic proper-
ties such as molar volumes, heats of formation and the related
properties of strain and resonance energies, to field induced
properties such as electric and magnetic susceptibilities including
Pascal’s aromatic exaltation, to properties (infrared and Raman
intensities and related transition probabilities) induced by the
absorption or emission of light. A compendium of articles
submitted by workers applying QTAIM to problems rang-
ing across chemistry and solid-state physics has recently ap-
peared.34

The most important of all the physical verifications of
QTAIM is the common sense observation that “atoms that look
the same have the same properties”. Atoms that look the same
have the same distribution of charge andall properties of the

K(Ω) - G(Ω) ) L(Ω) ) -(p2/4m)∫Ω
dr ∇2F(r ) )

-(p2/4m)IdS(Ω) ∇F(r )‚n(r ) (26)

∇F(r )‚n(r ) ) 0 for all r on the surface ofΩ (27)

-2T(Ω) ) V (Ω) (28)

-T(Ω) ) T(Ω) + V(Ω) ) Ee(Ω) (29)

-T(Ω) ) T(Ω) + V(Ω) ) E(Ω) (30)
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atom are found to be transferable to the same extent as is its
electron density. This is widely documented for densities derived
from both theory and experiment, particularly in biological
molecules, as recently summarized.33 It was the finding of the
paralleling transferability of the densities of the electrons and
their kinetic energy for regions of space bounded by zero-flux
surfaces that led to the hypothesis that the virial theorem might
apply to an atom in a molecule: ifT(Ω) is transferable, then so
is E(Ω) and one has in a single stroke defined an atom with
transferable, additive properties.26

Conclusions

The equation of motion for any propertyA is rewritten in eq
31 with the time derivative placed inside the atomic boundary,
leaving only the physically most relevant commutator and
current terms, terms that survive even in the case of a stationary
state.

Every reader, upon reaching this point, has derived eq 31 from
Schrödinger’s equation and knows that it is mathematically
correct. It is physically correct when the regionΩ is bounded
by a surface of local zero flux in the gradient vector of the
electron density, satisfying Bethe’s experimental dictum that
“In science you know you know”.35 Thus eq 31 predicts what
can be measured, and in doing so, it extends quantum mechanics
to an open system.The case ofΩ ) R3 now appears as a special
limiting case of the more general one whereΩ is any region
bounded by a zero-flux surface. A recent article provides a
narrative account of the variational development of QTAIM,
tracing its development from studies on the properties of the
electron density.36

QTAIM, by providing the quantum basis for an atom in a
molecule, necessarily recovers all of the related concepts of
experimental chemistry. In addition to the atoms exhibiting
additive, characteristic, and measurable properties, the theory
yields definitions of molecular structure and structural stability
in terms of the dynamics of the gradient vector field ofF(r ),27

and of electron localization/delocalization determined by the
atomic expectation value of the exchange density37,38and given
physical expression in the topology of the Laplacian of the
electron density.39

The definition of a bond path and hence of molecular structure
are inseparable from the definition and existence of an inter-
atomic surface, both of which are defined by the topological
behavior associated with the presence of a (3,-1) critical point.40

It has recently been demonstrated that QTAIM is “robust” when
extended to the relativistic domain and the entire theory can be
applied with the same zero-flux boundary condition across the
periodic tablesincluding the actinides.41 It is difficult to
understand anyone doubting that the zero-flux boundary is a
fundamental property of matter, providing the basis for the
generalization of physics to its atomic constituents. Two atoms
that share a zero-flux interatomic surface in equilibrium are
bonded to one another.40,42,43The presence of the bond path is
but a useful way of depicting and summarizing which pairs of
atoms share an interatomic surface. That this shorthand notation
mimics the way in which the same information is conveyed by
the structures that evolved from experimental chemistry is surely
one of the most powerful of all the physical vindications of the
zero-flux boundary condition.

QTAIM demonstrates the unity of QMsa single theory
embraces all that can be measuredsfrom the total system,
molecule, or crystal to the atoms of which they are composed.

Appendix

From the Open System Commutator, Eq 7, to the Surface
Integral, Eq 9. The symbol “‚” in eq 8 denotes the scalar
product of two vectors, one being the gradient vector

where i, j , andk denote unit, orthogonal vectors;i‚i ) j ‚j )
k‚k ) 1. Carrying out the differentiation indicated in eq 8 yields

The first and final terms cancel, yielding

which indeed equals the difference obtained when the operator
T̂ ) -(p2/2m)∇2 acts on the termsψ* and Âψ in eq 7. One
may obtain the final surface term in eq 9 directly from eq 7 by
using Green’s theorem which states

Extension to the Many-Electron Case.The only step that
may require comment on the extension to the many-electron
case concerns eq 8. In the many -electron case, the RHS of eq
8 becomes eq A-1, where the summation is over the kinetic

energy operators of allN electrons, includingr1. A coordinate
r i that is integrated over all space is differentiated from the
coordinate r1 that is integrated over the open systemΩ.
Applying Gauss’ theorem to a term in the sum forr i * r1, the
symbol dτ′′ denoting the removal of coordinater i from the
integration over all space, yields eq A-2. Each such term

vanishes because the surface term reduces to a term proportional
to the flux in the currentj (r i) in the surface at infinity, eq A-3.
The only term that survives is obtained when the surface term

applies to the coordinater1 defining the surface ofΩ, as given
in eq A-4, which, upon comparison with eq 18 of the text, is

the term that yields the flux in the currentjA in eq 19.
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